Demand Slides

Econ 360

Summer 2025

Summer 2025 06 - Demand 1/2

Learning Outcomes/Goals

Algebraically and graphically if a good is ordinary versus Giffen, and normal versus inferior from a consumer's utility function.

2 Algebraically and graphically determine if two goods are substitutes, complements, or neither.

3 Understand where the demand curves you see in other classes ultimately come from!

Summer 2025 06 - Demand 2/21

Where We Are/Going

- We know how to find a consumer's optimal bundle.
 - Where the optimal bundle is based on prices of the commodities and the consumer's income, wealth, or amount of money they have to spend.
- A demand curve from intro micro shows quantity demanded for any price.
 - ► How can we use what we know to make a demand curve for any consumer?

Summer 2025 06 - Demand 3/21

A consumer's demand

- ⋄ Consider a Cobb-Douglass utility function $U = x^{\alpha}y^{\beta}$ with budget $p_x x + p_y y \le m$.
- Review: We know optimal bundles!

$$y^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{p_v}$$
.

- So if we increase the price of either x, and keep price of y the same, then the amount of x the consumer buys at the optimum goes down!
- And therefore, the consumer's demand for x decreases as the price increases, just like a classical demand curve you have seen before

Summer 2025 06 - Demand 4/21

A consumer's demand

⋄ Consider a Cobb-Douglass utility function $U = x^{\alpha}y^{\beta}$ with budget $p_x x + p_y y \le m$.

♦ As income increases, m↑ and consumer demand increases as income increases.

Let's add some formal econ vocabulary to these concepts!

Summer 2025 06 - Demand 5/2

The 4 Types of Goods

Note: How we characterize a good based on price changes is unrelated/independent of how we characterize a good based on income changes!

Summer 2025 06 - Demand 6/2

Substitutes, Complements, or Neither

Substitutes

- We know perfect substitutes are when a consumer is always willing to trade between two goods a fixed ratio.
- But what about when a consumer is willing to trade between goods, just at a non-fixed, or variable, rate?
- ► For example, Dr.Pepper and Ginger-Ale.

Complements

- We know perfect complements are when a consumer always consumers two goods in a fixed ratio.
- ▶ But what about when a consumer likes consuming both goods together, just not in a fixed ratio?
- For example: peanut butter and jelly.
- Question: How can we use our demand function to tell if two goods are complements or substitutes?

Summer 2025 06 - Demand 7/21

Demand and Substitutes

- ⋄ Consider the following demand equations for two goods x and y with prices p_x , p_y and income m.
 - $\rightarrow x^* = m \cdot p_v$.

$$ightharpoonup y^* = m \cdot p_x.$$

- For each good, when the price of the other good increases demand increases.
 - ▶ For example, $\frac{\partial x^*}{\partial p_y} = m > 0$, so x and y are substitutes!

Summer 2025 06 - Demand 8/2

Demand and Complements

 Consider the following demand equations for two goods x and y with prices p_x, p_y and income m.

$$ightharpoonup X^* = \frac{m}{p_v}.$$

$$\triangleright y^* = \frac{m}{p_x}.$$

- For each good, when the price of the other good increases demand decreases.
 - ▶ For example, $\frac{\partial x^*}{\partial p_y} = \frac{-m}{p_y^2} < 0$, so x and y are complements!

Summer 2025 06 - Demand 9/2

⋄ Consider a Cobb-Douglass utility function $U = x^{\alpha}y^{\beta}$ with budget $p_x x + p_y y \le m$.

$$X^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{p_x}.$$

Question: How would you characterize these two goods?
 Normal vs Inferior, Ordinary vs Giffen?

Are these two goods substitutes, complements, or neither?

Summer 2025 06 - Demand 10/2

Characterizing Goods

- ⋄ Consider a Cobb-Douglass utility function $U = x^{\alpha}y^{\beta}$ with budget $p_x x + p_y y \le m$.
 - $X^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{p_x}.$
- Normal or Inferior?
 - $\blacktriangleright \frac{\partial x^*}{\partial m} = \frac{\alpha}{\alpha + \beta} \cdot \frac{1}{p_x}.$
 - $\blacktriangleright \frac{\partial y^*}{\partial m} = \frac{\alpha}{\alpha + \beta} \cdot \frac{1}{p_y}.$
 - ▶ These are both positive, so x and y are **Normal**.
- Ordinary or Giffen?

 - $\blacktriangleright \ \frac{\partial y^*}{\partial p_y} = \frac{\alpha}{\alpha + \beta} \cdot \frac{-m}{p_y^2}.$
 - ▶ These are both negative, so x and y are **Ordinary**.

Substitutes or Complements?

⋄ Consider a Cobb-Douglass utility function $U = x^{\alpha}y^{\beta}$ with budget $p_x x + p_y y \le m$.

Substitutes, Complements, or Neither?

$$\blacktriangleright \ \ \tfrac{\partial x^*}{\partial p_y} = 0.$$

$$\blacktriangleright \ \frac{\partial y^*}{\partial \rho_x} = 0.$$

► These are both 0, so the two goods are neither substitutes nor complements.

Creating a Demand Curve for X

- What is a demand curve?
- It is a relationship between price and quantity demanded, holding constant all other prices and income.
- ⋄ Let's use our demand for x: $x^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{\rho_x}$.
 - ▶ We will hold constant m and p_y . Let's plug in a bunch of different prices and plot this!
 - ▶ Suppose $\alpha = \beta = 1$ and m = 6.

Summer 2025 06 - Demand 13/2

Summer 2025 06 - Demand 14/21

Creating a Demand Curve for X

Summer 2025 06 - Demand 15/2

What about Demand vs Income?

- ⋄ We can create a similar graph showing demand for x holding constant p_x, p_y, and changing m.
- We call that an Engel curve.
- \diamond Let's again use our demand for x: $x^* = \frac{\alpha}{\alpha + \beta} \cdot \frac{m}{\rho_x}$.
- ⋄ Suppose $\alpha = \beta = 1$ and $p_x = p_y = 1$.
- $\diamond \text{ So } x_1 = \frac{1}{2} \cdot m.$

Engel Curve

Summer 2025 06 - Demand 17/21

Engel Curve

Summer 2025 06 - Demand 18/21

Wealth Expansion Curve and Price Offer Curve

Demand curves and Engel curves show a single good.

- What if we want to show both goods on one graph when i)income changes and ii)the price of only one good changes?
 - ▶ i) Wealth Expansion

▶ ii) Price Offer Curve

Summer 2025 06 - Demand 19/2

Big Question for Class

How can we use our utility maximization diagram to trace out a demand curve and an Engel curve for good x?

Summer 2025 06 - Demand 20/21

Elasticities Preview

- ⋄ In 160, you found elasticities as the percentage change in quantity demanded for a 1% change in price, or $\frac{\Delta Q^d}{\Delta P}$.
- \diamond Our Q^d is just the demand for each good, and we have the price in the demand function.
- So we can use the derivative of demand to not only say whether a good is ordinary or Giffen, but also a consumer's elasticity of demand!
- This will come back later in the semester and when we talk about aggregate demand/supply!

Summer 2025 06 - Demand 21/2